Thursday, 4 September 2025

Chapter 6 - Exercise 7

Exercise 6.7

Given $Γ ≡S : ∗, Q : S →S →∗$, we define in λC the expressions:

$M_1 ≡ λx,y : S. ΠR : S →S →∗. ((Πz : S. Rzz) →Rxy)$

$M_2 ≡ λx,y : S. ΠR : S →S →∗.((Πu,v : S. (Quv →Ruv)) →Rxy)$

(a) Give an inhabitant of $Πa : S. M_1 aa$ and a shortened derivation proving your answer.

(b) Give an inhabitant of $Πa,b : S. (Qab →M_2 ab)$ and a shortened derivation proving your answer.


(a) We first establish that $Πa : S. M_1 aa$ is

$$Πa : S.  ΠR : S →S →∗. ((Πz : S. Rzz) →Raa)$$

The following derivation proves the inhabitant is

$$\lambda a:S. \lambda R:S \to S \to *.\lambda f:(\Pi z:S.Rzz). fa$$


(b) We first establish that $Πa,b : S. (Qab →M_2 ab)$ is

$$Πa,b : S. (Qab → ΠR : S →S →∗.((Πu,v : S. (Quv →Ruv)) →Rab))$$

The following derivation proves the inhabitant is

$$\lambda a,b:S. \lambda q:Qab . \lambda R:S \to S \to *.\lambda f:(\Pi u,v : S. (Quv \to Ruv)) . fabq$$